Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Rep ; 13(1): 9478, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20240570

ABSTRACT

The Coronavirus Disease-2019 (COVID-19) outbreak is an unprecedented global pandemic, sparking grave public health emergencies. One of the measures to reduce COVID-19 transmissions recommended by the World Health Organization is hand hygiene, i.e., washing hands with soap and water or disinfecting them using an alcohol-based hand sanitiser (ABHS). Unfortunately, competing ABHSs with unknown quality, safety, and efficacy thrived, posing yet another risk to consumers. This study aims to develop, optimise, and validate a gas chromatography-mass spectrometry (GC-MS)-based analytical method to simultaneously identify and quantify ethanol or isopropyl alcohol as the active ingredient in ABHS, with simultaneous determination of methanol as an impurity. The GC-MS was operated in Electron Ionisation mode, and Selected Ion Monitoring was chosen as the data acquisition method for quantitation. The analytical method was validated for liquid and gel ABHSs, covering the specificity, linearity and range, accuracy, and precisions, including the limit of detection and the limit of quantitation. The specificity of each target analyte was established using the optimised chromatographic separation with unique quantifier and qualifier ions. The linearity was ascertained with a coefficient of determination (r2) of > 0.9994 over the corresponding specification range. Respectively, the accuracy and precisions were satisfactory within 98.99 to 101.09% and < 3.04% of the relative standard deviation. The method was successfully applied to 69 ABHS samples, where 14 contained insufficient amounts of the active ingredient. Alarmingly, four samples comprised a high amount of methanol ranging from 5.3 to 19.4% with respect to the active alcohol percentage, which may pose significant short- and long-term health issues, leading to life-threatening crises for consumers. The method established would benefit in protecting the public against the potential harm due to substandard or unsafe ABHS products, primarily due to the presence of hazardous impurities such as methanol.


Subject(s)
COVID-19 , Hand Sanitizers , Humans , Hand Sanitizers/chemistry , Ethanol/analysis , Methanol/analysis , 2-Propanol , COVID-19/epidemiology , COVID-19/prevention & control
2.
Antimicrob Resist Infect Control ; 12(1): 42, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2302208

ABSTRACT

BACKGROUND: The use of disinfectants and alcohol-based hand rubs (ABHR) to prevent COVID-19 transmission increased in the first wave of the infection. To meet the increased demand, the Iranian Ministry of Health issued an emergency use authorization allowing new manufacturers to enter the market, despite the limited capacity for surveillance of these products during COVID-19. Methanol poisoning outbreaks spread rapidly, and more people died from methanol poisoning than COVID-19 in some cities. The aim of this study was to analyze some ABHRs in the Iranian market to see if (a) ABHRs are standard and suitable for hand antisepsis and (b) contained potentially dangerous toxic alcohols. METHOD: Between February and March 2020, 64 brands of ABHR were conveniently collected from pharmacies, supermarkets, and shops selling hygienic products and analyzed using Gas Chromatography. World Health Organization and Food and Drug Administration guidelines were used to define minimum requirements for ABHR. For estimating the risk for acute methanol poisoning, we assumed a serum methanol concentration of 200 mg/L following ABHR ingestion was sufficient to cause intoxication. This threshold concentration would be achieved in an average 75-kg adult after consuming 8000 mg (or eight grams) methanol in 1-2 h. RESULTS: The median [IQR] (range) concentration of ethanol, isopropanol, and methanol were 59% v/v [32.2, 68] (0, 99), 0 mg/L [0, 0] (0, 197,961), and 0 mg/L [0, 0] (0, 680,100), respectively. There was a strong negative correlation between methanol and ethanol contents of hand rubbers (r= -0.617, p < 0.001). Almost 47% of ABHRs complied with minimum standards. In 12.5% of ABHRs, high concentrations of methanol were observed, which have no antiseptic properties but could cause acute methanol poisoning if ingested. CONCLUSION: COVID-19 initiated a policy for distribution and use of ABHR with little control. As ABHR and masks are still accepted preventive measures of the disease, non-standard ABHR compositions may increase the population's risk to both COVID-19 infection and methanol poisoning.


Subject(s)
2-Propanol , COVID-19 , United States , Adult , Humans , Iran/epidemiology , Cross-Sectional Studies , Methanol , Hand Disinfection/methods , Ethanol/chemistry
3.
Antimicrob Resist Infect Control ; 11(1): 97, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1951353

ABSTRACT

INTRODUCTION: Healthcare workers often experience skin dryness and irritation from performing hand hygiene frequently. Low acceptability and tolerability of a formulation are barriers to hand hygiene compliance, though little research has been conducted on what specific types of formulation have higher acceptability than others. OBJECTIVE: To compare the acceptability and tolerability of an ethanol-based handrub gel with superfatting agents to the isopropanol-based formulations (a rub and a gel formulation) currently used by healthcare workers at the University of Geneva Hospitals, Geneva, Switzerland. METHODS: Forty-two participants were randomized to two sequences, testing the isopropanol-based formulation that they are using currently (Hopirub® or Hopigel®), and the ethanol-based formulation containing superfatting agents (Saniswiss Sanitizer Hands H1). Participants tested each of the formulations over 7-10 day work shifts, after which skin condition was assessed and feedback was collected. RESULTS: H1 scored significantly better than the control formulations for skin dryness (P = 0.0209), and participants felt less discomfort in their hands when using that formulation (P = 0.0448). H1 caused less skin dryness than Hopirub®/Hopigel® (P = 0.0210). Though overall preference was quite polarized, 21 participants preferred H1 intervention formulation and 17 preferred the Hopirub®/Hopigel® formulation that they normally used in their care activities. CONCLUSION: We observed a difference in acceptability and strongly polarized preferences among the participants' reactions to the formulations tested. These results indicate that giving healthcare workers a choice between different high-quality products is important to ensure maximum acceptability.


Subject(s)
Hand Disinfection , Hand Hygiene , 2-Propanol , Ethanol , Hand Disinfection/methods , Health Personnel , Humans
4.
Environ Sci Pollut Res Int ; 29(32): 48736-48747, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1707126

ABSTRACT

In order to reduce the transmission of pathogens, and COVID-19, WHO and NHS England recommend hand washing (HW) and/or the use of hand sanitizer (HS). The planetary health consequences of these different methods of hand hygiene have not been quantified. A comparative life cycle assessment (LCA) was carried out to compare the environmental impact of the UK population practising increased levels of hand hygiene during the COVID-19 pandemic for 1 year. Washing hands with soap and water was compared to using hand sanitizer (both ethanol and isopropanol based sanitizers were studied). The isopropanol-based HS had the lowest environmental impact in 14 out of the 16 impact categories used in this study. For climate change, hand hygiene using isopropanol HS produced the equivalent of 1060 million kg CO2, compared to 1460 million for ethanol HS, 2300 million for bar soap HW, and 4240 million for liquid soap HW. For both the ethanol and isopropanol HS, the active ingredient was the greatest overall contributing factor to the environmental impact (83.24% and 68.68% respectively). For HW with liquid soap and bar soap, there were additional contributing factors other than the soap itself: for example tap water use (28.12% and 48.68% respectively) and the laundering of a hand towel to dry the hands (10.17% and 17.92% respectively). All forms of hand hygiene have an environmental cost, and this needs to be weighed up against the health benefits of preventing disease transmission. When comparing hand sanitizers to handwashing with soap and water, this study found that using isopropanol based hand sanitizer is better for planetary health. However, no method of hand hygiene was ideal; isopropanol had a greater fossil fuel resource use than ethanol based hand sanitizer. More research is needed to find hand hygiene sources which do not diminish planetary health, and environmental impact is a consideration for public health campaigns around hand hygiene.


Subject(s)
COVID-19 , Hand Hygiene , Hand Sanitizers , 2-Propanol , COVID-19/prevention & control , Ethanol , Hand Disinfection/methods , Humans , Pandemics , Soaps , Water
5.
J Pharm Biomed Anal ; 214: 114694, 2022 May 30.
Article in English | MEDLINE | ID: covidwho-1703943

ABSTRACT

Alcohol-based hand rubs (ABHRs) have found large diffusion during the Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, thus becoming the most widespread means for hand hygiene. Whereby, it is fundamental to assess the alignment of commercial ABHRs to the indications provided by the principal health agencies regarding alcohol content and possible impurities. In this work, a novel improvement of previous existent methods for the determination of alcohol content in such products was reported. In particular, two alternative sensitive and reproducible methods, such as an electrochemical screen-printed based enzymatic (alcohol oxidase) biosensor and a Headspace Gas Chromatography coupled with Mass Spectrometry (HS-GC/MS) were proposed. The electrochemical device represents a rapid, low-cost and accurate fraud screening method for alcohol-based hand rubs. The second technique confirms, identifies and simultaneously determines ethyl alcohol, isopropyl alcohol, n-propyl alcohol and methyl alcohol, improving their extraction through acidification in the sample pre-treatment step. The developed specific HS-GC/MS method was in-house validated according to ISO/IEC 17025 requirements. Analytical parameters such as limit of detection (LoD 0.13%v/v - 0.17%v/v), limit of quantification (LoQ 0.44% v/v - 0.57% v/v), inter-day repeatability (RSDR 2.1-10.7%) and recovery (80-110%) were assessed. The relative expanded uncertainties range (between 0.1%v/v and 3.4%v/v) for all the analytes were evaluated. Results obtained using the different analytical approaches were compared and indicated that the two data sets were comparable (median; HS-GC/MS, 56%v/v; electrochemical biosensor, 62%v/v) and were not statistically different (one-way ANOVA test; p = 0.062). In addition, a good correlation (95%) was found. This study noticed that only 39% of the tested hand sanitiser products had the recommended average alcohol content, thus highlighting the need for analytical controls on this type of products.


Subject(s)
Biosensing Techniques , COVID-19 , 2-Propanol , COVID-19/diagnosis , COVID-19/prevention & control , Ethanol , Humans , SARS-CoV-2
6.
J Occup Environ Hyg ; 19(2): 111-121, 2022 02.
Article in English | MEDLINE | ID: covidwho-1619791

ABSTRACT

Many healthcare professionals have been forced, under acute shortages, to extend medical exam gloves beyond their intended single use. Despite limited available literature, the CDC proposed a set of guidelines for repeated exam gloves use, indicating a maximum number of treatments for three widely available disinfectants. This study examines how these treatments affect the mechanical properties of latex and nitrile gloves. Furthermore, an acceptability threshold is proposed for changes in tensile property, specifically elastic modulus, as an indication of degradation. This proposed criterion was also applied to similar studies available in the literature to determine applicability and aid in recommendation development. Three different latex glove brands and three nitrile brands were exposed to repeated treatments of an alcohol-based hand rub, diluted bleach, or soap and water. Tensile tests of samples cut from untreated and treated gloves were performed to assess the change in elastic modulus induced by each treatment. The findings suggest that latex gloves performed well within the CDC recommended guidelines of six repeated treatments for an ethanol-based hand rub and 10 repeated treatments of either dilute bleach or soap and water. Nitrile exam gloves, on the other hand, showed significant changes in elastic modulus, with more inconclusive results among brands. This was especially true for treatment with dilute bleach and soap and water. Further research is needed to investigate the effects of disinfection products on the mechanical integrity of nitrile exam gloves. The results support the use of five repeated treatments of ethanol-based hand rub for nitrile exam gloves, a lower threshold than currently recommended by the CDC. This research also supports that the CDC recommendation of 10 repeated treatment with soap and water is appropriate for latex exam gloves, but not for nitrile exam gloves. Occupational safety and health professionals involved in the selection of disposable exam gloves for infection control should consider the compatibility of the glove polymer type with available disinfectants, especially if extended use with repeated disinfection becomes necessary.


Subject(s)
Disinfectants , Disinfection , 2-Propanol , Gloves, Protective , Latex
7.
Int J Cosmet Sci ; 43(6): 748-763, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1506242

ABSTRACT

OBJECTIVE: The main objective of this paper is to analyse and attempt to understand the nature of rheological changes observed and the dynamics of Carbopol NF 980 hydroalcoholic gels neutralized specifically by triethanol amine (TEA), both as a function of time and alcohol type to probe time stabilities and ageing effects in such carbopol gel systems. The rheological changes and dynamics of 3 carbopol gel systems were observed; the gels included a water-based, ethanol-based, and isopropyl alcohol-based gel. It is hoped that this study shall shed light on the dynamical nature and the microstructural evolution of such networked gel systems, which were maintained under closed isothermal conditions and left completely unperturbed. The experimental results can provide the information necessary to understand and proposes plausible mechanisms guiding this dynamical behaviour in hydroalcoholic carbopol gels. METHODS: A TA instrument mechanical rheometer was used to measure the viscosity and storage and loss modulus, and a pH meter was utilized to determine the changes in each sample over the period. RESULTS: Studying the differences in the gel structures upon initial preparation illustrated that the ethanol and isopropyl alcohol (IPA) gels differed from the water-based gel in terms of viscosity, G', and G″, with the IPA gel displaying the lowest viscosity and moduli values across all shear rates. All the three gel systems exhibited strong shear thinning characteristics and were reminiscent of yield stress type found in colloidal gels. The water-based gel compared to the hydroalcoholic gels was strongly G' dominated, with the magnitude of the difference between G' and G″ observed to be much higher. This reflects that initial formation of the water-based gel structure possesses a much more rigid structure with a high elastic modulus component dominating. This also suggests that the water-based gel structure displayed stronger interactions between the carbopol particles when compared to those of the hydroalcoholic gels. Over the 30-day period, it was observed that the ethanol and water-based gels did not reveal any appreciable viscosity changes, with only an approximate 12% and 7% change from day 1 to 30, respectively. It was observed that the IPA systems' viscosity drastically increased over the period, with an approximately 77% change from day 1 to 30. The water and ethanol-based gels also exhibited very similar rheological behaviour over the entire time period with G' dominating G″. The G″ values of the water and ethanol-based gels decreased slightly at the end of day 30 by 10% and 16%, respectively, while the G' values for each sample remained essentially unchanged, increasing only 0.06% for the water-based gel, and increasing 1.4% for the ethanol-based gel. This further confirms the relatively stable gel structures attained. For the isopropyl gel system, the storage modulus of the system exhibited an average percent increase of approximately 16% from day 1 to day 30, but interestingly the loss modulus varied the least amongst all the gel systems, with only a 3% increase. The increase in G' reflects upon the evolution of a more rigid structure by day 30 for the IPA gel. This observation is clearly consistent with the corresponding increase in viscosity observed in the IPA gel. None of the gels tested displayed a consistent pH over the period. The pH of the hydroalcoholic gels was higher than that of the water-based gel for a majority of the period. The greatest fluctuations in pH were observed for the water and IPA gels, even though the water-based gel had one of the most stable rheological profiles out of the samples tested. The water, ethanol, and IPA gels' pH increased approximately 25%, 6%, and 5%, respectively, from day 1 to day 30. CONCLUSION: The rheological and pH study of the 3 hand sanitizer systems over a 30-day period allowed for rational insights into the plausible reasons responsible for driving the observed rheological changes in these unperturbed systems. For the water-based gel, we hypothesize that the changes observed are due to physical ageing, where the gel structure has evolved over time to eventually progress towards a more stabilized framework structure. The pH of the gel upon formation was on the lower side. Such a lower pH influences the formation of a gel, which is comparatively less swollen and occupies a slightly lesser volume, and thereby points to a much less compacted gel network structure or alternatively, a more fluid structure. If the particles moved around more, the system was not initially in a state of low energy, causing increased particle movement, and in turn, physical ageing. This could be responsible for the development of a physically altered structure over time. The gel structure dynamically attempts to minimize its free energy by becoming more rigid, which has been observed as being manifested in the decrease of both the viscosity and the G″. For the hydroalcoholic gels, we conjecture that ageing observed was a result of chemical ageing, and the alcohol type employed in the preparation is primarily responsible for exhibiting this effect. The polarities of ethyl alcohol and isopropyl alcohol are key to the stabilization of such resultant network structures which get formed because of neutralization. It has been observed in previous studies that with decreasing polarity, there was an increase in the neutralization needed to obtain the development of a structure half as well developed as the final resultant structure. Isopropyl alcohol is a much less polar solvent compared to ethanol and water, and therefore required higher levels of TEA as the base to neutralize the system. We conjecture that the charged TEA cationic species had a greater propensity to get exchanged with bulk solution in the vicinity of the polymer into the bulk solution, and that the pH fluctuation observed indicated a kinetic exchange process over time, causing the viscosity and moduli profiles to increase along with the pH. At this time though, further investigations need to be carried out to truly understand the underlying instability, and thus dynamics for gel systems of this type.


OBJECTIF: L'objectif principal de cet article est d'analyser et de tenter de comprendre la nature des changements rhéologiques observés et la dynamique des gels hydroalcooliques Carbopol NF 980 neutralisés spécifiquement par l'amine triéthanol (TEA), à la fois en fonction du temps et du type d'alcool pour sonder les stabilités temporelles et les effets du vieillissement dans de tels systèmes de gel carbopol. Les changements rhéologiques et la dynamique de 3 systèmes de gel de carbopol ont été observés ; les gels comprenaient un gel à base d'eau, d'éthanol et d'alcool isopropylique. On espère que cette étude éclairera la nature dynamique et l'évolution microstructurale de ces systèmes de gel en réseau, qui ont été maintenus dans des conditions isothermes fermées et laissés complètement imperturbables. Les résultats expérimentaux peuvent fournir les informations nécessaires pour comprendre et proposer des mécanismes plausibles guidant ce comportement dynamique dans les gels hydroalcooliques de carbopol. MÉTHODE: Un rhéomètre TA mécanique a été utilisé pour mesurer la viscosité, le module de stockage et de perte, et un pH-mètre a été utilisé pour déterminer les changements dans chaque échantillon au cours de la période. RÉSULTATS: L'étude des différences dans les structures du gel lors de la préparation initiale a montré que les gels d'éthanol et d'alcool isopropylique (IPA) différaient du gel à base d'eau en termes de viscosité, G' et G'' le gel IPA affichant les valeurs de viscosité et de modules les plus faibles pour tous les taux de cisaillement. Les trois systèmes de gel présentaient de fortes caractéristiques d'amincissement par cisaillement et rappelaient le type de contrainte d'élasticité que l'on trouve dans les gels colloïdaux. Le gel à base d'eau par rapport aux gels hydroalcooliques était fortement dominé par G', l'ampleur de la différence entre G' et G'' présentant une importance beaucoup plus élevée. Cela reflète le fait que la formation initiale de la structure de gel à base d'eau possède une structure beaucoup plus rigide avec un composant de module élastique élevé dominant. Cela suggère également que la structure du gel à base d'eau présentait des interactions plus fortes entre les particules de carbopol par rapport à celles des gels hydroalcooliques. Au cours de la période de 30 jours, il a été observé que l'éthanol et les gels à base d'eau n'ont révélé aucun changement de viscosité appréciable, avec seulement un changement approximatif de 12% et 7% du jour 1 au jour 30, respectivement. Il a été observé que la viscosité des systèmes IPA a considérablement augmenté au cours de la période, avec un changement d'environ 77% du jour 1 au jour 30. Les gels à base d'eau et d'éthanol ont également montré un comportement rhéologique très similaire sur toute la période, G' dominant G''. Les valeurs G'' des gels à base d'eau et d'éthanol ont légèrement diminué à la fin de la journée 30 de 10% et 16%, respectivement, tandis que les valeurs G' pour chaque échantillon sont restées essentiellement inchangées, n'augmentant que de 0,06% pour le gel à base d'eau et augmentant de 1,4% pour le gel à base d'éthanol. Cela confirme en outre les structures de gel relativement stables atteintes. Pour le système de gel isopropylique, le module de stockage du système a montré une augmentation moyenne d'environ 16% du jour 1 au jour 30, mais il est intéressant de noter que le module de perte variait le moins parmi tous les systèmes de gel, avec seulement une augmentation de 3%. L'augmentation de G' reflète l'évolution d'une structure plus rigide au jour 30 pour le gel IPA. Cette observation est clairement cohérente avec l'augmentation correspondante de la viscosité observée dans le gel IPA. Aucun des gels testés n'a montré un pH constant sur la période. Le pH des gels hydroalcooliques était supérieur à celui du gel à base d'eau pendant la majeure partie de la période. Les plus grandes fluctuations de pH ont été observées pour les gels d'eau et d'IPA, même si le gel à base d'eau avait l'un des profils rhéologiques les plus stables parmi les échantillons testés. Le pH de l'eau, de l'éthanol et des gels IPA a augmenté d'environ 25%, 6% et 5%, respectivement, du jour 1 au jour 30. CONCLUSION: L'étude rhéologique et pH des 3 systèmes de désinfectant pour les mains sur une période de 30 jours a permis d'obtenir des informations rationnelles sur les raisons plausibles responsables des changements rhéologiques observés dans ces systèmes non perturbés. Pour le gel à base d'eau, nous émettons l'hypothèse que les changements observés sont dus au vieillissement physique, où la structure du gel a évolué au fil du temps pour éventuellement progresser vers une structure plus stabilisée. Le pH du gel lors de la formation était dans la partie inférieure. Un pH aussi bas influence la formation d'un gel, qui est comparativement moins gonflé et occupe un volume légèrement inférieur, et indique ainsi une structure de réseau de gel beaucoup moins compactée ou autrement dit, une structure plus fluide. Si les particules se déplaçaient davantage, le système n'était pas initialement dans un état de faible énergie, ce qui entraînait une augmentation du mouvement des particules et, à son tour, un vieillissement physique. Cela pourrait être responsable du développement d'une structure physiquement modifiée au fil du temps. La structure du gel tente dynamiquement de minimiser son énergie libre en devenant plus rigide, ce qui a été observé comme se manifestant par la diminution de la viscosité et du G'' Pour les gels hydroalcooliques, nous pensons que le vieillissement observé était le résultat d'un vieillissement chimique, et le type d'alcool utilisé dans la préparation est principalement responsable de cet effet. Les polarités de l'alcool éthylique et de l'alcool isopropylique sont essentielles à la stabilisation de ces structures de réseau résultantes qui se forment en raison de la neutralisation. Il a été observé dans des études antérieures qu'avec la diminution de la polarité, il y avait une augmentation de la neutralisation nécessaire pour obtenir le développement d'une structure à moitié aussi bien développée que la structure résultante finale. L'alcool isopropylique est un solvant beaucoup moins polaire que l'éthanol et l'eau, et nécessitait donc des niveaux plus élevés de TEA comme base pour neutraliser le système. Nous pensons que les espèces cationiques TEA chargées avaient une plus grande propension à être échangées avec une solution en vrac à proximité du polymère, dans la solution en vrac, et que la fluctuation du pH observée indiquait un processus d'échange cinétique au fil du temps, entraînant une augmentation des profils de viscosité et de modules avec le pH. À l'heure actuelle, cependant, des recherches supplémentaires doivent être menées pour vraiment comprendre l'instabilité sous-jacente, et donc la dynamique des systèmes de gel de ce type.


Subject(s)
2-Propanol/chemistry , Acrylic Resins/chemistry , Ethanol/chemistry , Hydrogels/chemistry , Rheology , Water/chemistry
8.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: covidwho-1495720

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
9.
Biomed Res Int ; 2021: 6653950, 2021.
Article in English | MEDLINE | ID: covidwho-1263958

ABSTRACT

The study is aimed at establishing the optimal parameters for RNA purification of pooled specimens, in SARS-CoV-2 assay. This research work evaluates the difference of extracted RNA purity of pooled samples with and without treatment with isopropyl alcohol and its effect on real-time RT-PCR. As per the protocol of the Indian Council of Medical Research (ICMR), 5 sample pools were analysed using qRT-PCR. A total of 100 pooled samples were selected for the study by mixing 50 µL of one COVID-19 positive nasopharyngeal/oropharyngeal (NP/OP) specimen and 50 µL each of 4 known negative specimens. Pool RNA was extracted using the column-based method, and 1 set of pooled extracted RNA was tested as such, while RNA of the second set was treated additionally with chilled isopropyl alcohol (modified protocol). Further, the purity of extracted RNA in both the groups was checked using Microvolume Spectrophotometers (Nanodrop) followed by RT-PCR targeting E-gene and RNaseP target. The results showed that the purity index of extracted RNA of untreated pooled specimens was inferior to isopropyl alcohol-treated templates, which was observed to be 85% sensitivity and 100% specificity. The average Cq (E gene) in the unpurified and purified pool RNA group was 34.66 and 31.48, respectively. The nanodrop data suggested that purified RNA concentration was significantly increased with an average value of 24.73 ± 1.49 ng/uL, which might be the reason for high sensitivity and specificity. Thus, this group testing of SARS-CoV-2 cases using pools of 5 individual samples would be the best alternative for saving molecular reagents, personnel time, and can increase the overall testing capacity. However, purity of RNA is one of the important determinants to procure unfailing results, thus, this additional purification step must be included in the protocol after RNA has been extracted using commercially available kit before performing qRT-PCR.


Subject(s)
COVID-19/diagnosis , Coronavirus Envelope Proteins/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , 2-Propanol/chemistry , Biomarkers/analysis , COVID-19/virology , DNA Primers/chemical synthesis , DNA Primers/genetics , Humans , Nasopharynx/virology , Oropharynx/virology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/economics , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
10.
Clin Microbiol Infect ; 27(7): 1042.e1-1042.e4, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1201418

ABSTRACT

OBJECTIVES: Disinfection effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on human skin remains unclear because of the hazards of viral exposure. An evaluation model, which has been previously generated using human skin obtained from forensic autopsy samples, accurately mimics in vivo skin conditions for evaluating the effectiveness of disinfection against the virus. Using this model, we evaluated disinfection effectiveness against viruses on human skin. METHODS: Ethanol (EA), isopropanol (IPA), chlorhexidine gluconate (CHG) and benzalkonium chloride (BAC) were used as target disinfectants. First, disinfectant effectiveness against SARS-CoV-2 and influenza A virus (IAV) was evaluated in vitro. Disinfectant effectiveness against SARS-CoV-2 and IAV on human skin was then evaluated by titrating viruses present on the skin after applying each disinfectant on the skin for 5-60 seconds. RESULTS: Both, SARS-CoV-2 and IAV on human skin were completely inactivated within 5 seconds by 40%-80% EA and 70% IPA (log reduction values (LRVs) were >4). However, SARS-CoV-2 and IAV were barely inactivated by 20% EA (LRVs were <1). In vitro evaluation showed that, compared with EA and IPA, CHG and BAC were significantly inferior in terms of disinfection effectiveness. Conversely, the disinfection effectiveness of CHG and BAC against SARS-CoV-2 was higher on human skin than in vitro, and increased with increases in their concentration and reaction time (LRVs of 0.2% CHG/0.05% BAC were >2, and LRVs of 1.0% CHG/0.2% BAC were >2.5). CONCLUSIONS: Proper hand hygiene practices using alcohol-based disinfectants such as EA/IPA effectively inactivate SARS-CoV-2 and IAV on human skin.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , SARS-CoV-2/drug effects , 2-Propanol/pharmacology , Anti-Infective Agents, Local/pharmacology , Benzalkonium Compounds/pharmacology , COVID-19/virology , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Ethanol/pharmacology , Hand Hygiene/methods , Humans , Models, Biological , Skin/virology
12.
Int J Prosthodont ; 35(3): 343­349, 2022.
Article in English | MEDLINE | ID: covidwho-1116838

ABSTRACT

PURPOSE: To describe the possible adverse effects of sodium hypochlorite (NaOCl) solutions, high-concentration alcohol solutions, and povidone-iodine products, which are indicated for disinfection of inanimate surfaces against human coronavirus of the severe acute respiratory syndrome (SARS-CoV), on prosthesis materials, including zirconia, lithium disilicate, and acrylic resin. MATERIALS AND METHODS: A systematic literature research for articles published between January 2010 and February 2020 was conducted in Scopus, PubMed/Medline, Web of Science, Embase, and Science Direct using a combination of the following MeSH/Emtree terms and keywords: sodium hypochlorite, alcohol, ethanol, povidone-iodine, dental ceramic, zirconia, lithium disilicate, and acrylic resin. RESULTS: A total of 538 studies were identified in the search during initial screening, of which 44 were subject to full-text evaluation, and 24 fulfilled the inclusion criteria. Seven articles on zirconia and lithium disilicate investigated the effect of NaOCl (0.5% and 1%), 96% isopropanol, and 80% ethanol on bond strength after saliva contamination. The remaining articles evaluated color alteration, surface roughness modifications, decrease in flexural strength, and bonding strength of all cleaning agents on acrylic resin. CONCLUSION: NaOCl (1%) solution for 1 minute is recommended to reduce SARS-CoV infectivity and to minimize the risk of cross-contamination through prosthetic materials. The increase in surface roughness and color alteration were recorded using 1% NaOCl on acrylic resin, but this increase was not clinically significant. A decrease in bonding strength was determined after using 1% NaOCl, 96% isopropanol, and 80% ethanol solutions on lithium disilicate. Silanization before the try-in procedure and the application of the second layer of silane after cleaning methods are recommended to improve the bonding strength.


Subject(s)
COVID-19 , Dental Bonding , 2-Propanol , Acrylic Resins , COVID-19/prevention & control , Ceramics/chemistry , Dental Bonding/methods , Dental Porcelain/chemistry , Dental Stress Analysis , Disinfection , Ethanol , Humans , Materials Testing , Pandemics , Povidone-Iodine , Resin Cements , Sodium Hypochlorite , Surface Properties , Systematic Reviews as Topic , Zirconium/chemistry
13.
JAMA Ophthalmol ; 139(3): 348-351, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1039145

ABSTRACT

Importance: The coronavirus disease 2019 (COVID-19) pandemic has made alcohol-based hand sanitizers (ABHS) widely available in public places. This may warrant determining whether cases of unintentional ocular exposure are increasing, especially in children. Objective: To describe the epidemiologic trend of pediatric eye exposures to ABHS and to report the severity of the ocular lesions. Design, Setting, and Participants: Retrospective case series conducted from April 1, 2020, to August 24, 2020. Cases were retrieved from the national database of the French Poison Control Centers (PCC) and from a pediatric ophthalmology referral hospital in Paris, France. Cases of ocular exposure to chemical agents in children younger than 18 years during the study period were reviewed. Cases of ABHS exposure were included. Exposures: The following data were collected: age, sex, circumstances of exposure, symptoms, size of the epithelial defect at first examination, time between the incident and re-epithelialization, and medical and/or surgical management. Main Outcomes and Measures: Comparison of the number of eye exposures to ABHS in children between April to August 2020 and April to August 2019. Results: Between April 1 and August 24, 2020, there were 7 times more pediatric cases of ABHS eye exposures reported in the PCC database compared with the same period in 2019 (9.9% of pediatric eye exposures in 2020 vs 1.3% in 2019; difference, 8.6%; 95% CI, 7.4-9.9; P < .001). The number of cases occurring in public places increased in 2020 (from 16.4% in May to 52.4% in August). Similarly, admissions to the eye hospital for ABHS exposure increased at the same period (16 children in 2020 including 10 boys; mean [SD] age, 3.5 [1.4] years vs 1 boy aged 16 months in 2019). Eight of them presented with a corneal and/or conjunctival ulcer, involving more than 50% of the corneal surface for 6 of them. Two cases required amniotic membrane transplant. Conclusions and Relevance: These data support the likelihood of an increasing number of unintentional ocular exposures to ABHS in the pediatric population. To maintain good public compliance with hand disinfection, these findings support that health authorities should ensure the safe use of these devices and warn the parents and caregivers about their potential danger for children.


Subject(s)
2-Propanol/adverse effects , COVID-19/prevention & control , Ethanol/adverse effects , Eye Injuries/chemically induced , Eye Injuries/epidemiology , Hand Disinfection , Hand Sanitizers/adverse effects , Adolescent , Age Factors , COVID-19/transmission , Child , Child, Preschool , Eye Injuries/diagnosis , Female , France/epidemiology , Gels , Humans , Infant , Male , Poison Control Centers , Risk Assessment , Risk Factors , Time Factors
14.
Infect Control Hosp Epidemiol ; 42(3): 253-260, 2021 03.
Article in English | MEDLINE | ID: covidwho-1009986

ABSTRACT

BACKGROUND: Personal protective equipment (PPE) is a critical need during the coronavirus disease 2019 (COVID-19) pandemic. Alternative sources of surgical masks, including 3-dimensionally (3D) printed approaches that may be reused, are urgently needed to prevent PPE shortages. Few data exist identifying decontamination strategies to inactivate viral pathogens and retain 3D-printing material integrity. OBJECTIVE: To test viral disinfection methods on 3D-printing materials. METHODS: The viricidal activity of common disinfectants (10% bleach, quaternary ammonium sanitizer, 3% hydrogen peroxide, or 70% isopropanol and exposure to heat (50°C, and 70°C) were tested on four 3D-printed materials used in the healthcare setting, including a surgical mask design developed by the Veterans' Health Administration. Inactivation was assessed for several clinically relevant RNA and DNA pathogenic viruses, including severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and human immunodeficiency virus 1 (HIV-1). RESULTS: SARS-CoV-2 and all viruses tested were completely inactivated by a single application of bleach, ammonium quaternary compounds, or hydrogen peroxide. Similarly, exposure to dry heat (70°C) for 30 minutes completely inactivated all viruses tested. In contrast, 70% isopropanol reduced viral titers significantly less well following a single application. Inactivation did not interfere with material integrity of the 3D-printed materials. CONCLUSIONS: Several standard decontamination approaches effectively disinfected 3D-printed materials. These approaches were effective in the inactivation SARS-CoV-2, its surrogates, and other clinically relevant viral pathogens. The decontamination of 3D-printed surgical mask materials may be useful during crisis situations in which surgical mask supplies are limited.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Masks , SARS-CoV-2/drug effects , Virus Inactivation , 2-Propanol , DNA, Viral/drug effects , Decontamination/methods , HIV-1/drug effects , Healthy Volunteers , Hot Temperature , Humans , Hydrogen Peroxide , Personal Protective Equipment , Printing, Three-Dimensional , RNA, Viral/drug effects , Virus Diseases/prevention & control
15.
Exp Biol Med (Maywood) ; 246(6): 740-748, 2021 03.
Article in English | MEDLINE | ID: covidwho-978883

ABSTRACT

Shortages of N95 respirators for use by medical personnel have driven consideration of novel conservation strategies, including decontamination for reuse and extended use. Decontamination methods listed as promising by the Centers for Disease Control and Prevention (CDC) (vaporous hydrogen peroxide (VHP), wet heat, ultraviolet irradiation (UVI)) and several methods considered for low resource environments (bleach, isopropyl alcohol and detergent/soap) were studied for two commonly used surgical N95 respirators (3M™ 1860 and 1870+ Aura™). Although N95 filtration performance depends on the electrostatically charged electret filtration layer, the impact of decontamination on this layer is largely unexplored. As such, respirator performance following decontamination was assessed based on the fit, filtration efficiency, and pressure drop, along with the relationship between (1) surface charge of the electret layer, and (2) elastic properties of the straps. Decontamination with VHP, wet heat, UVI, and bleach did not degrade fit and filtration performance or electret charge. Isopropyl alcohol and soap significantly degraded fit, filtration performance, and electret charge. Pressure drop across the respirators was unchanged. Modest degradation of N95 strap elasticity was observed in mechanical fatigue testing, a model for repeated donnings and doffings. CDC recommended decontamination methods including VHP, wet heat, and UV light did not degrade N95 respirator fit or filtration performance in these tests. Extended use of N95 respirators may degrade strap elasticity, but a loss of face seal integrity should be apparent during user seal checks. NIOSH recommends performing user seal checks after every donning to detect loss of appropriate fit. Decontamination methods which degrade electret charge such as alcohols or detergents should not be used on N95 respirators. The loss of N95 performance due to electret degradation would not be apparent to a respirator user or evident during a negative pressure user seal check.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , N95 Respirators/supply & distribution , 2-Propanol/pharmacology , Detergents/pharmacology , Humans , Hydrogen Peroxide/pharmacology , SARS-CoV-2 , Sodium Hypochlorite/pharmacology , Static Electricity , Ultraviolet Rays
16.
Ann Acad Med Singap ; 49(9): 674-676, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-973006

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic continues to spread globally at a staggering speed. At present, there is no effective treatment or vaccine for COVID-19. Hand disinfection is a cost-effective way to prevent its transmission. According to the Centres for Disease Control and Prevention (CDC) guidelines, we should wash our hands with soap and water for at least 20 seconds. If soap and water are not readily available, alcohol-based hand rubs (ABHRs) with at least 60% alcohol are the alternative. With diligent hand disinfection reinforced during COVID-19, there is an increased prevalence of contact dermatitis. This commentary highlights the fact that contact dermatitis is a readily treatable condition and should not cause any deviation of proper hand hygiene. In irritant contact dermatitis (ICD), the management strategies are selection of less irritating hand hygiene products, frequent use of moisturisers to rebuild the skin barrier, and education on proper hand hygiene practices. In allergic contact dermatitis (ACD), the identification and avoidance of the contact allergen is the key to treatment. However, ACD is less common and only accounts for 20% of the cases. The identified allergens in hand cleansers are predominantly preservative excipients and ACD attributable to ABHR are very uncommon. Alcohol-free hand rubs are widely available on the market but it is not a recommended alternative to ABHRs by the CDC.


Subject(s)
COVID-19/prevention & control , Dermatitis, Allergic Contact/therapy , Dermatitis, Irritant/therapy , Emollients/therapeutic use , Hand Dermatoses/therapy , Hand Disinfection/methods , Hygroscopic Agents/therapeutic use , 1-Propanol/adverse effects , 2-Propanol/adverse effects , Anti-Infective Agents, Local/adverse effects , Dermatitis, Allergic Contact/etiology , Dermatitis, Irritant/etiology , Dermatitis, Occupational/etiology , Dermatitis, Occupational/therapy , Detergents/adverse effects , Ethanol/adverse effects , Hand Dermatoses/etiology , Hand Hygiene , Hand Sanitizers/adverse effects , Health Personnel , Humans
17.
Alcohol Alcohol ; 56(1): 42-46, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-929805

ABSTRACT

AIMS: We conducted a cross-sectional survey to estimate the prevalence and clinical manifestation of disulfiram ethanol reaction (DER) and isopropanol toxicity (IT) in patients with alcohol use disorders, on disulfiram. Alcohol-based hand rub contains either ethanol or isopropanol or both. COVID-19 pandemic has led to wide scale usage of sanitizers. Patients with alcohol use disorders, on disulfiram, might experience disulfiram ethanol like reactions with alcohol-based sanitizers. METHODS: We telephonically contacted 339 patients, prescribed disulfiram between January 2014 and March 2020. The assessment pertained to the last 3 months (i.e. third week of March to third week of June 2020). RESULT: The sample consisted of middle-aged men with a mean 16 years of alcohol dependence. Among the 82 (24%) patients adherent to disulfiram, 42 (12.3%) were using alcohol-based hand rubs. Out of these, a total of eight patients (19%; 95% CI 9-33) had features suggestive of DER; four of whom also had features indicative of IT. Five patients (62.5%) had mild and self-limiting symptoms. Severe systemic reactions were experienced by three (37.5%). Severe reactions were observed with exposure to sanitizers in greater amounts, on moist skin or through inhalation. CONCLUSION: Patients on disulfiram should be advised to use alternate methods of hand hygiene.


Subject(s)
Alcohol Deterrents/adverse effects , Alcoholism/diagnosis , Disulfiram/adverse effects , Drug-Related Side Effects and Adverse Reactions/diagnosis , Ethanol/adverse effects , Hand Sanitizers/adverse effects , 2-Propanol/administration & dosage , 2-Propanol/adverse effects , Adult , Alcohol Deterrents/administration & dosage , Alcoholism/drug therapy , COVID-19/prevention & control , Cross-Sectional Studies , Disulfiram/administration & dosage , Drug-Related Side Effects and Adverse Reactions/etiology , Ethanol/administration & dosage , Hand Sanitizers/administration & dosage , Humans , Male , Middle Aged , Substance Abuse Treatment Centers
18.
Int J Legal Med ; 135(1): 175-182, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-888178

ABSTRACT

Isopropyl alcohol, or propan-2-ol (IPA), is found in numerous chemicals including alcohol-based hand rubs whose use has been recently widely extended to the general population since the onset of the COVID-19 pandemic. This widespread of IPA use could potentially, but not necessarily, be responsible for an increase in IPA poisoning cases (e.g., in alcoholics and/or for suicide attempt, even more in a lockdown situation). Forensic identification of IPA-related fatalities remains challenging as IPA post mortem detection can also result from antemortem or post mortem production, or post mortem contamination. In order to illustrate this issue, we report the case of a 33-year-old man found dead with a bottle of pure IPA liquid close to him. Toxicological positive results only consisted in IPA (464, 260, 465 and 991 mg/L) and acetone (1560, 2340, 3040 and 1360 mg/L) in blood, vitreous humour, urine and bile, respectively (determinations using headspace gas chromatography with flame ionization detection). These IPA absolute concentrations and IPA-to-acetone ratios appear inferior to those usually reported in the literature (higher than 1000 mg/L and 1.1, respectively) in IPA poisoning cases. In conclusion, this death can be cautiously regarded as an IPA ingestion-related fatality in the hypothesis of a survival time which have promoted IPA metabolism to acetone: this hypothesis is supported by the putative limited IPA-ingested dose. This report emphasizes the fact that post mortem IPA and acetone concentration interpretation involves to take account of (i) results in multiple biological specimens, (ii) complete case history, and (iii) a search of possible IPA presence at the scene of death.


Subject(s)
2-Propanol/analysis , 2-Propanol/poisoning , Acetone/analysis , Solvents/analysis , Solvents/poisoning , Adult , Bile/chemistry , Forensic Toxicology , Humans , Male , Vitreous Body/chemistry
19.
Arh Hig Rada Toksikol ; 71(3): 261-264, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-874402

ABSTRACT

All COVID-19 prevention strategies include regular use of surface disinfectants and hand sanitisers. As these measures took hold in Croatia, the Croatian Poison Control Centre started receiving phone calls from the general public and healthcare workers, which prompted us to investigate whether the risk of suspected/symptomatic poisonings with disinfectants and sanitisers really increased. To that end we compared their frequency and characteristics in the first half of 2019 and 2020. Cases of exposures to disinfectants doubled in the first half of 2020 (41 vs 21 cases in 2019), and exposure to sanitisers increased about nine times (46 vs 5 cases in 2019). In 2020, the most common ingredients of disinfectants and sanitisers involved in poisoning incidents were hypochlorite/glutaraldehyde, and ethanol/isopropyl alcohol, respectively. Exposures to disinfectants were recorded mostly in adults (56 %) as accidental (78 %) through ingestion or inhalation (86 %). Fortunately, most callers were asymptomatic (people called for advice because they were concerned), but nearly half reported mild gastrointestinal or respiratory irritation, and in one case severe symptoms were reported (gastrointestinal corrosive injury). Reports of exposure to hand sanitisers highlighted preschool children as the most vulnerable group. Accidental exposure through ingestion dominated, but, again, only mild symptoms (gastrointestinal or eye irritation) developed in one third of the cases. These preliminary findings, however limited, confirm that increased availability and use of disinfectants and sanitisers significantly increased the risk of poisoning, particularly in preschool children through accidental ingestion of hand sanitisers. We therefore believe that epidemiological recommendations for COVID-19 prevention should include warnings informing the general public of the risks of poisoning with surface and hand disinfectants in particular.


Subject(s)
2-Propanol/toxicity , Coronavirus Infections/prevention & control , Disinfectants/toxicity , Ethanol/toxicity , Glutaral/toxicity , Hand Sanitizers/toxicity , Hypochlorous Acid/toxicity , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Croatia/epidemiology , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Young Adult
20.
Contact Dermatitis ; 84(1): 1-14, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-868066

ABSTRACT

BACKGROUND: The use of alcoholic-based hand rubs (ABHRs) is an important tool for hand hygiene, especially in times of the COVID-19 pandemic. Possible irritant effects of ABHR may prevent their use by persons at risk of infection. METHODS: This systematic review is based on a PubMed search of articles published between January 2000 and September 2019 in English and German, and a manual search, related to the irritation potential of alcohol-based disinfectants restricted to n-propanol (1-propanol) and its structural isomer isopropanol (isopropyl alcohol, 2-propanol). RESULTS: The majority of the included studies show a low irritation potential of n-propanol alone. However, recent studies provide evidence for significant barrier damage effects of repeated exposure to 60% n-propanol in healthy, as well as atopic skin in vivo. The synergistic response of combined irritants, (ie, a combination of n-propanol or isopropanol with detergents such as sodium lauryl sulfate) is greater, compared with a quantitatively identical application of the same irritant alone. CONCLUSION: While recent studies indicate a higher risk of skin irritation for n-propanol and isopropanol than reported in the past, this risk still seems to be lower than that for frequent handwashing with detergents, as recommended by some to prevent COVID-19 infections.


Subject(s)
1-Propanol/adverse effects , 2-Propanol/adverse effects , COVID-19/prevention & control , Dermatitis, Irritant/etiology , Anti-Infective Agents, Local/adverse effects , Hand Disinfection/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL